A Compressive Survey on Restructuring User Search Results by Using Feedback Session

نویسنده

  • Shinde Sonali Bhaskar
چکیده

this internet search engine relevance may be enhanced by means of considering end user search goal. In addition to the individual search engine optimization experience is usually increased through inferring individual search goals. This paper proposes a novel approach to infer user search goals by analyzing search engine query logs known as feedback session. First framework is proposed to discover different user search goals for a query by clustering the proposed feedback sessions. Feedback sessions are constructed from user click-through logs efficiently. Second a novel approach to generate pseudo-documents to better represent the feedback sessions for clustering. In the proposed technique we are going to implement Semantic Clustering algorithm to improve the results as compare to other techniques. Finally, a new criterion “Classified Average Precision (CAP)” to evaluate the performance of inferring user search goals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Query expansion based on relevance feedback and latent semantic analysis

Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...

متن کامل

Web pages ranking algorithm based on reinforcement learning and user feedback

The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...

متن کامل

RRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features

Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...

متن کامل

A New Hybrid Method for Web Pages Ranking in Search Engines

There are many algorithms for optimizing the search engine results, ranking takes place according to one or more parameters such as; Backward Links, Forward Links, Content, click through rate and etc. The quality and performance of these algorithms depend on the listed parameters. The ranking is one of the most important components of the search engine that represents the degree of the vitality...

متن کامل

Improved Accuracy and User Satisfaction by Inferring User Search Goals based on Feedback Sessions

User search goals can be defined as information on various aspects of query that user want to obtain and it can be considered as the collection of information needs for a query. Different users may have different search goals in their mind when they pass ambiguous query to a search engine. Thus, it is important to infer and analyze user search goals to improve the performance of a search engine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014